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Abstract 

The N = 2 topological Yang-Mills and holomorphic Yang-Mills theories on simply connected 
compact Kihler surfaces with pg z 1 are re-examined. The N = 2 symmetry is clarified in terms of a 
Dolbeault model of the equivariant cohomology. We realize the non-algebraic part of Donaldson’s 
polynomial invariants as well as the algebraic part. We calculate Donaldson’s polynomials on 
H*,O(S, Z) $ H0,2(S, Z). 
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1. Introduction 

The N = 2 super Yang-Mills theory on arbitrary four-manifolds can be twisted to 
define N = 1 topological Yang-Mills (TYM) theory which realize Donaldson’s polynomial 
invariants of smooth four-manifolds [ 1,2] as correlation functions [3]. Recently, Witten has 
determined the Donaldson invariants of compact Kiihler surfaces with pg > 1 by exploiting 
some standard properties of N = 2 and N = 1 super Yang-Mills theories [4]. 

Some time ago, Park [5] proposed N = 2 TYM theory on compact K&ler surfaces. His 
construction is based directly on the N = 1 TYM theory utilizing the complex and Ktihler 
structures of the moduli space of anti-self dual (ASD) connections. He has also proposed 
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N = 2 holomorphic Yang-Mills (HYM) theory whose partition function is a generating 
functional of certain Donaldson invariants [6], adapting the two-dimensional construction 
of Witten’s to K5hler surfaces [7]. However, both theories describe the algebraic part of the 
Donaldson invariants (the Donaldson invariants depending on H’,‘(X, Z)), analogous to 
the invariants defined by Li [8], rather than all the invariants and the non-algebraic part was 
simply ignored. Furthermore, we will see that it is impossible to realize the non-algebraic 
part in those constructions. The purpose of this paper is to fill those gaps. 

In this paper, we re-examine N = 2 TYM and HYM theories on simply connected com- 
pact Kahler surfaces with pg 2 1, which lead to the different N = 2 (global) supersymmetry 
transformation laws for some auxiliary fields. This allows us to realize the non-algebraic 
part of Donaldson’s polynomials as well as the algebraic part. We calculate Donaldson’s 
polynomial invariants on H2*O(X, Z) @ H0v2(X, Z). 

This paper is organized as follows: in Section 2, we give backgrounds and motivations of 
this paper. We compare the basic supersymmetry transformation laws of the N = 1 and the 
N = 2 TYM theories in terms of the de Rham and a Dolbeault models of the equivariant 
cohomology. We show that the Dolbeault equivariant cohomology is not isomorphic to the de 
Rham equivariant cohomology. In the field theoretical context, this amcunts to introducing 
on-shell observables in the N = 2 TYM and HYM theories. In Section 3, we construct 
new N = 2 TYM theory. We briefly discuss the geometrical and the physical meanings of 
fermionic zero-modes. We resolve the problem of the on-shell invariants adapting Witten’s 
method of introducing the mass gap [4]. In Section 4, we study deformations to HYM 
theories and calculate Donaldson’s invariants on H2,0 (X, if’) CB H0,2(X, H). We also show 
that the broken part of the N = 2 supersymmetry due to the mass gap is restored in the 
process of the deformation. We compare our results with others and give some general 
remarks on the algebraic parts of the invariants. Our method will lead us to determine the 
full invariants for simply connected K3 surfaces. 

2. Backgrounds and motivations 

We consider a simply connected compact K5hler surface X with K%hler form w and 
b2f = 1 + 2p, > 3 where bl and ps denote the number of the self-dual harmonic two 
forms and the geometric genus, respectively. Let E be a complex vector bundle over X 
with the restriction of structure group to SU(2). We write go for the Lie algebra bundle 
associated with E by adjoint representation. We introduce a positive definite quadratic form 
(a, b) = -Tr ab on &i(2), where Tr denotes the trace in the two-dimensional representation. 
Then, the bundle E is classified by the instanton number 

k = (c2(-0 W = & 
s 

TrFr\FEh. 

X 

Let A denote the space of all connections, which is an affine space whose tangent vec- 
tors are represented by gE-valued one form SA E 52’(g~). Let 6 be the group of gauge 
transformations. 
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2.1. The N = 1 super-symmetry 

The global supersymmetry operator S, of the N = 1 topological Yang-Mills theory can 
be interpreted as the exterior (covariant) derivative on A/G [3,9]. The N = I supersymmetry 
transformation laws for the basic multiplet (A, P’, @,) are 

&,A = -4, &w = -idA@. s,@=O, (2.1) 

where P E fli(n~) and 0 E Q’(~E>. One introduces a global quantum number (or 
the ghost number) U which assigns the value 1 to S,. The U numbers of the basic fields 
(A, 9, @) are (0, 1,2). Note that 6: = -ia@, where Sa is the generator of a gauge transfor- 
mation with infinitesimal parameter @. Thus, 6; = 0 if it acts on a G-invariant functional of 
the basic fields. The supersymmetry operator S, can be viewed as the de Rham cohomology 
operator on A/G if G acts freely on A. 

More precisely, S, is the operator of the de Rham model for the G-equivariant cohomology 
of A. 2 Let Lie(G) be the Lie algebra of 6 which is the space .R’(~E) of ge-valued zero- 
forms. The B-action on A is generated by vector fields V,, where we pick an orthonormal 
basis TI of Lie(G). Let Fun(Lie(G)) be the algebra of polynomial functions, generated by 
Qa with degree 2, on Lie(G). The G-equivariant de Rham complex is Q:(A) = (Q*(A) @ 
Fun(Lie(Q))G. The associated differential operator is 4, which can be represented as 

(2.2) 

where A’ are the local coordinates on A. We have 

6; = -i@Ca, (2.3) 

where C, is the Lie derivative with respect to V,. Thus, 6, 2 = 0 on the G-invariant subspace 
S2E (A) of Q*(A) @ Fun(Lie(G)). The G-equivariant de Rham cohomology Hz (A) is de- 
fined as the pairs (O;(A), S,). 

In Donaldson-Witten theory, we are interested in the G-equivariant cohomology of the 
space of anti-self dual (ASD) connections. Since there are no reducible ASD connections, 
for generic metrics on X, 6 acts freely on the space of ASD connections, the G-equivariant 
cohomology reduces to the de Rham cohomology of the moduli space M of ASD connec- 
tions. The de Rham cohomology on M can be obtained from Hz(A) by restriction and 
reduction. For example, an element of Hi(A) is given by 

($2) - ’ 
8n2 s Tr(9 A P + i@FA) A J2), 

X 

(2.4) 

where wc2) E H 2 (X, Z). The cohomology class of Hi (A) depends only on the cohomology 
class of H2 (X, Z). In Witten’s approach, an element of H2 (M) can be obtained from Hz (A) 
by the field theoretical methods, in which ly is eventually replaced by its zero-modes, A by 

* We refer the reader to [7,10-121 for details on the equivariant cohomology. We generally follow 171. 
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the ASD connection and @ by its vacuum expectation value. One can also view G(*) as the 
equivariantly closed extension [IO] of a closed form (1/8x*) sx Tr(* A WY) A m(*) on A. 
It is also known that any element of H*(M) is induced from an element of Hz(d) [2,13]. 

2.2. The N = 2 supersymmetry 

Picking a complex structure J on X, one can introduce a complex structure JA on A as 
well as on d/G, 

JASA = J6A, 6A E Td (2.5) 

by identifying T '*Od and To, 'A in Td = T ‘,‘A ~3 To, ‘A with the gE valued (1, O)-forms 
and (0, 1)-forms on X, respectively. We can also introduce natural Kahler structure on A 
with Kahler form 

1 
WE- 

8n2 s 
Tr(GA A 6A) A o. (2.6) 

X 

Using the complex structures J and Jd, we can decompose S, = s+S and find the N = 2 
transformation laws for the basic multiplet (A’, A”, I++, $, cp) [5]: 

sA’ = -$, s$ = 0, 
GA’ = 0, @b = -i&q, sql = 0, 
sA”= 0, srj = -i&(0, SC&J = 0, 

(2.7) 

iA”= -Ic/, s$ =o, 

where @ E Q’90(g~), $ E .R’,t(g~) and v E a”‘(gE). Note that @ can be identified with 
holomorphic (co)tangent vectors on A. It is important to note that p is of degree (1, 1). We 
introduce two global quantum numbers (or ghost numbers) (U, R), which assign (1, 1) to 
sand(l,-l)toS.Aquantityofdegree(p,q)hasU=p+qandR=p-q.Theabove 
transformation laws play a central role in constructing N = 2 TYM theories. 

The commutation relations of the fermionic symmetry generators s, S are 

s* =o, (sS + Ss) = idAp = -iS,, s* = 0, (2.8) 

where 6, is the generator of a gauge transformation with infinitesimal parameter cp. Thus 
[s, S] = 0 precisely on the G-invariant space or if it acts on B-invariant functionals of 
A’, A”, I@, 6, (p. Thus, S can be roughly viewed as the operator of Dolbeault cohomology 
group on d/G. 

In fact, S is the operator of a Dolbeault cohomological analogue of &equivariant coho- 
mology of A. 3 This can be formally described as follows: we let a*,* (A) be the Dolbeault 
complex on A. Now we interpret Fun(Lie(G)) to the algebra of polynomials functions gen- 
erated by (pa. Then the desired Dolbeault model of the &7-equivariant complex is Q$* = 

3 Note that the transformations (2.7) are slightly different, in convention, from those in [5]. Here we follow 
the usual conventions of physics literature. 
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(Q*,*(d) @I Fun(G))G. The associated differential operators with the degrees (1,O) and 
(0, 1) are s and S represented by 

where i, i are the local holomorphic and anti-holomorphic indices tangent to A. We have 

s* = 0, sS + Ss = -icp”C,, s2 = 0. (2.10) 

Thus, (s, S} = 0 on the G-invariant subspace .R$* of Q*%*(d) @I Fun(Lie(G)). 
We call elements of Q;*(d) such that Sa = 0 (equivariantly) G-closed forms and those 

of the form a! = $9 (equivariantly) S-exact forms. Since S defines a map S : G;*(d) + 

% *‘*‘I (A) and S* = 0 for any cx E Q;*(d), the pairs (a;‘*(d), S) is a complex. We de- 
fine the G-equivariant Dolbeault cohomology HG’* (A) by the cohomology of the complex 
<Q$*(da>. S). 

An immediate observation is that the analogue of the Hodge decomposition theorem will 
not be applicable in the equivariant sense. Since A has the Kahler structure, the de Rham 
and the Dolbeault cohomologies on A are related by the Hodge decompositions. If we 
assume G acts freely on A, we can expect our equivariant Dolbeault cohomology G$‘* (A) 
is isomorphic to the usual Dolbeault cohomology on d/G; and the equivariant de Rham 
cohomology Q$ (A) is isomorphic to the de Rham cohomology of d/G. Since the Kahler 
structure on A does not descend to d/G in general, the Hodge decomposition theorem is 
not applicable in general. That is, a G-invariant and S-closed quantity is not automatically 
s-closed one. 

2.3. The old construction 

In the old construction [5], we introduced an anti-ghost B, a self-dual two form B = 
B*,O + B”.* + Boo E 52$(gE) in the adjoint representation, with (U, R) = (-2.0). Then 
(2.8) naturally leads us to the multiplet (B, ix, -ix, H) with transformation laws 

sB= -ix, sx =o, 
SB= ii, si = 0, 
si= H - $[cp, B], sH = -ii[qo, x], 

Sx= H + &J, 4, SH = -ii[cp, i]. 

The ghost numbers of the various fields are given by 

Fields A’ A” $ 6 cp B x jj H 
UNumber 0 0 1 1 2 -2 -1 -1 0 
RNumber 0 0 1 -1 0 0 1 -1 0 

(2.11) 

(2.12) 
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The action of N = 2 TYM theory can be written in the form 4 

sold = TrBr\*F-; (2.13) 

Note that V has (U, R) = (-2,0), so that the action has (U, R) = (0,O). We find that 

&td = $1 Tr [ -H2,’ A *(H0*2 + iF0,2) - HOT2 A *(H2v0 + iF2*‘) 

X 

+ix 2.o A *$A$ + ii”v2 A *aA+ + i[q, X2*‘] A *jog2 

- - 
+i[p, Xo’2] A *j2” - iiB2” A *aAaAq + iiB”‘2 A *a,&~ 

f&J, IP] A *[fp, lP] - 
( 

2H0(H0 + if) - ij’L’t&$ 

-ix’naA$ - 2i[q, X”]jo - i[q, B’][q, so] 

(2.14) 

where f = ;AF and A is adjoint to the wedge multiplication of o. 
For the details how N = 2 TYM theory (or TYM theory in general) realizes the Donaldson 

invariants, we refer the reader to [S] ([3,14]). We will show in Section 2.4 that the old N = 2 
TYM theory realizes the algebraic part of Donaldson’s polynomials only. 

2.4. Problem of the on-shell invariants 

An observable of N = 2 supersymmetric TYM theory should be gauge invariant as 
well as invariant under s and S. The candidates of the non-trivial topological observables 
depending on H2 (X, Z) are 

1 62.0 - 
8x2 s 

Tr($ A @) A cooy2, 

1 x $2 - 
87r2 J 

Tr($ A $> A w2”, 

1 x ,1.1 - 
4x2 s 

Tr(iqF’,’ +?,h$)Ao”‘, 

X 

(2.15) 

4 The action of N = 1 TYM theory can be written as S = -iS, W [3,14]. The relation between N = 1 and 

N = 2 theories can be most conveniently understood with an analogy to the exterior derivative d = a + 2. 
An exact real (p. p)-form (Y = d/I on a compact K;ihler manifold can be written as 

01 = $(ddc)y = $(iaa - iaa)y = ia$Y 

forsome@-l,p-I)-formp,wheredC=-J-’dJ=i(a-8) 
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where wP,q E HP.q(X, Z) and we generally denote I%~.’ as an (r, s)-form on A (or of 
degree (r, s)). Note that the above quantities are the components of the decompositions of 
W(*) E Hi (A) and w -@J) E Q~“(A) with r + s = 2. 

As already noted in [5], the only quantity which is both s and S invariant is &‘.‘. The 
quantity Go,* . IS invariant only under G-transformation while C&O is invariant only under 
s-transformation, i.e. 

G’.’ E H;,‘(A), Go.* E H;.*(A), ~55~~’ $ H;sO(A). (2.16) 

The part (1/4x*) 1, Tr($ A $) A w’.’ of w -‘.’ is a closed form on A. Then, 6”’ is the 
equivariantly closed extension. On the other hand, such an equivariant extension of &?.’ 
is not possible since cp, which is the generator of Fun(Lie(@), is of degree (1, 1). This 
is an example that the Hodge decomposition theorem is not satisfied in the equivariant 
cohomology. 5 

The TYM theory realizes the Donaldson invariants by expectation values of topological 
observables [3]. In the N = 2 theory, the quantities W*,’ and Go.* are not in the set of 
observables. 

However, it is important to note that 02,0 and Go,* are non-trivial s and S; invariants if 
they are restricted to the moduli space M of ASD connections. The Kahler structure on 
M guarantees that an s-invariant quantity is S-invariant and vi.ce versa. 7ii put it differently, 

not all the elements of H*,*(M) can be obtained from the elements of HE‘*(A) by the 
restriction and the reduction. On the other hand, the Donaldson invariants are cup products 
of (ordinary) cohomology classes on M evaluated on the fundamental homology cycle 
of M provided with a suitable compactification; and the path integral of TYM theory is 
localized to M. Thus, we should include O*,O and Go,* to realize the full invariants. Once 
the localization to M and a suitable procedure of including W*,” and Go.* are understood, 
it is sufficient to consider the G-symmetry (that is, the equivariant Dolbeault cohomology 
H$* (A) only), due to the familiar Hodge decomposition theorem. These are the geometrical 
reasons underlying the key procedure of Witten’s breaking the N = 2 supersymmetry down 
to N = 1 symmetry by introducing suitable mass terms [4]. 

2.5. The non-Abelian localization 

The N = 2 HYM theory is another model for the Donaldson invariants on a K%hler 
surface [6], adopting Witten’s non-Abelian equivariant localization theorem [7]. It shares 
the same N = 2 supersymmetry (or the same structure of the Dolbeault equivariant coho- 
mology) with the N = 2 TYM theory. In Ref. [7], Witten proved that the two-dimensional 
Yang-Mills theory is equivalent to the two-dimensional version of the TYM theory (or the 
two-dimensional version of the Donaldson theory). The N = 2 HYM theory is a natu- 
ral generalization of Witten’s construction to higher-dimensional KCihler manifolds. In the 
two-dimensional case, the action functional of the Yang-Mills theory is proportional to the 

5 In the non-equivariant cohomology on a KIhler manifold, a d-closed form is automatically L3 and 3 closed 
as vice versa. 
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normed square of the moment map md + Lie(Q)* where Lie(G)* is the dual of Lie(G) 
[I 1,7]. In the higher-dimensional K5hler manifolds, one can define a similar moment map 
A',' + Lie(G)* after restricting A to the space dt,’ of all connections whose curvature 
two-form is of type (1, 1). The classical version of the N = 2 HYM theory is the Yang-Mills 
theory restricted to A”’ whose action functional is also proportional to the norm squared 
of the moment map [2,6]. A version of the non-Abelian localization theorem states (in a 
field theoretical context) that a path integral with an action functional given by the normed 
square of the equivariant moment map of field configuration can be expressed as sums of 
contributions of the critical points. Such a path integral can be used to obtain cohomology 
rings of the reduced phase space. 6 The relevant path integrals are the partition function and 
the expectation value of observables which correspond to equivariantly closed form on the 
field configuration. 

There would be two models of the equivariant localization, the original de Rham model of 
Witten and the Dolbeault model. The N = 2 HYM theory is an example of the latter. In terms 
of the de Rham model of the equivariant localization, the entire (de Rham) cohomology 
rings on the reduced phase space can in principle be obtained. On the other hand, a new 
problem arises in the Dolbeault model since not all the Dolbeault cohomology classes on 
the reduced phase space would be obtained from the elements of the Dolbeault equivariant 
cohomology. 

One of the main purposes of this paper is to eliminate that problem in the N = 2 HYM 
theory on the Kahler surface. 7 Clearly, this is closely related to the similar problem of the 
N = 2 TYM theory. 

3. New construction 

In this section, we construct a new N = 2 TYM theory to overcome the problem of the 
on-shell invariants. In the new construction, we will impose different transformation laws 
for anti-ghost multiplets. 

3. I. Action 

We introduce a commuting anti-ghost B” E Q’(gE) in the adjoint representation with 
(U, R) = (-2,O).Then(2.8)leadsustomultiplet (B’, ix’, -iz”, Ho) withtransformation 
laws: 

sB” = -ix’, sx” = 0, 
SB” = ijo, SK0 = 0, 
SjO = HO - &p, BO], sH” = -ii[q, x0], (3.1) 

SXO = HO + :rbo, BOl, SH” = -ii[(o, X0]. 

6 This is a rapidly growing subject and we will not go into details. Recent developments can be found in 
[IS191. 

7 On the other hand, the N = 2 HYM theory on a Riemann surface has no such problem, thus not really 
different from the original theory [7], since every S-closed observables are s-closed [5]. 
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We also introduce an anti-commuting anti-ghost x 2.0 E fi2”(a~) with (U, R) = (- 1, I) 
and an anti-commuting anti-ghost jo,2 E L?“,2(g~) with (II, R) = (-1, -1) with trans- 
formation laws: 

sx2,u = 0, sH2.’ = -i[cp, ~~~‘1, 
Sx2.0 = $30, i/f2,’ = 0, 
@.2 = H0.2, sH’.~ = 0, (3.2) 

Qp2 = 0, sH0.2 = -i[cp, joT2]. 

One can easily check that these satisfy the commutation relations (2.8). 
Now, the most general form of new N = 2 supersymmetric action is 

S = is V + iS V + i (SS - Ss)B, (3.3) 

where V and 7 should be S and s closed quantities with (U, R) numbers (- 1, 1) and 
(- 1, - l), respectively. One finds the following unique choices: 

7 = -A s Trio-2 A *F2,‘, 

X 

s 
Tr x2.’ A *F0,2, 

X 

B = -A / Tr(B’f + axoK’) w2 - $ / Trx2,0 A *jn.2, 

X X 

where (Y, B = 0,or 1 and f = ;AF’,’ where A is the operator of contraction with the 
Kahler form w. For CI = B = 1, we find 

S = $ 
s [ 

Tr _2H290 ,+, *H0,2 _ iH2T0 A *F092 _ iHo.’ A *F2*0 

X 

+2i[(p, X2”] A *)?“‘2 + ix2” A *&I+& + ijo’ A *?)A$ 

- 2H”Ho + 2iH’f - 2i[(p, x”]jo + $BoA ((i&& - i&&)cp - 2[$. $1) 

w2 _;icp, fp~[~, BO] - ijOA&+ - ixOft84lCI T . ) 1 (3.5) 

We can integrate out H2.‘, Ho,2 and Ho from the action by setting H2,’ = --iiF2,‘, 
Ho.2 - _ -4iF0.2 and Ho = - iif”, or by the Gaussian integral, which leads to modified 
transformation laws 

-0.2 
sx = _iiF0.2, sx2.0= -!-iF2.’ , 

SjjO = --iif - i[p, B”] , ix0 = -iif + i[cp, B”] . 
(3.6) 

One can see that the locus of s and S fixed points in the above transformations is precisely 
the space of ASD connections. Now we can rewrite the action as 



40 S. Hyun, J.S. Park/Journal of Geometry and Physics 20 (1996) 31-53 

S=’ 
h2 S[ 

Tr _iF2,0r\*F0,2 
2 + ix 2,0 A &,,?+6 f ijo’2 A *aA+ 

X 

-2i[qo, x2,‘] A *ioT2 - 
( 

if’ - 2i[q, x”]jo - ijon&+ - ixOAaA$ 

BOl[cp, B”l + $BoA (cia.4%4 - i&a& - 2[$, $I))$] (3.7) 

One can easily check that this new theory shares almost all the properties with the old 
theory studied in [5]. A notable difference between the two theories is that x2,’ (jo92) is 
no longer s-exact (S-exact) in the new setting. 

Remark. One may wonder why the transformation laws for the anti-ghosts multiplets Eqs. 
(3.1) and (3.2) are different. To understand this, we should recall the interpretation of TYM 
theory of Atiyah-Jeffrey [20] based on the Mathai-Quillen formalism [21]. Consider an 
infinite-dimensional vector bundle G! over d/G whose section s is s(A) = -F+(A) where 
F+ is the self-dual part of the curvature. The moduli space M of ASD connections is the 
zero-locus of the section s. In our case, we can decompose the section s (the bundle G!) 
according to the decompositions F+(A) = F2,0(A’) @ f(A’, A”)@ @ F0,2(A”). Roughly 
speaking, the anti-ghosts live in the dual space of the fiber V of & [22]. We have introduced 
the commuting anti-ghost B” for the constraint f(A’, A”) = $A F ‘,’ (A’, A”) = 0 and the 
anti-commuting anti-ghosts j’s2 and x2.’ for the constraints F2,‘(A’) = 0 and F0,2(A”) = 
0, respectively. The underlying reason for the different transformation laws, Eqs. (3.1) and 
(3.2), is that F2so(A’) and F”,2(A”) dependonly on A’ and A”, respectively, while f(A’, A”) 
depends both on A’ and A”. The details are given in [23]. 

3.2. Fermionic zero-modes 

Important properties common to both old and new N = 2 topological Yang-Mills theories 
are the roles of fermionic zero-modes. We will briefly recall the results of [5]. The related 
mathematical topics can be found in [2,24]. 

It is convenient to use the language of holomorphic vector bundles. It is well known that 
an ASD connection A endows E with a holomorphic structure &A of given topological type. 
Let Endo be the trace-free endomorphism bundle of CA. It turns out that zero-modes 
of j& $ and jjo*2 define elements of H’(Ende(ZA)), Ht(Endo(E~)) and H2(Endu(EA)), 
respectively. The formal complex dimension of the moduli space M is (-ho,’ + ho+’ - h0*2), 
where ho-p = dim@HP(Et&(EA)). 

Since the fermionic zero-modes of (jju, 4, j”,‘) carry the U-charge (- 1, 1, -l), the 
half of the net violation AU/2 of the U-number in the path integral measure is equal to the 
formal complex dimension. It is important to note that there is no net R-number violation 
in the path integral measure [5]. We assume, throughout this paper, that there exist the 
zero-modes pairs of I,+ and $ only. Then the moduli space is a smooth Kahler manifold 
with complex dimension d = 4k - 3( 1 + pg), identical to the number of $ zero-modes. 

It is convenient to introduce quantum operators I!? and l? such that: 
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fix0 = ,-'x0, fiI+b = U,+$, 6x2*' = ,-5290, fiBOzu-2~0, 

fijo=u-lxo, ir?J=uIp, (fj.jo.2 = u-1jfo,2, iB”= B”, 

ix0 = rp, ii* = r$r, 4~~2~ = i-x 230, hp = t&P, 
&O = ,-120, rip5 = r-‘$ jijo.2 = r-lxo.2, kcp =cp. 

41 

(3.8) 

Then the action S is invariant under the transformations generated by fi and I?. Now the 
fermionic part DX,f of path integral measure, after integrating out every non-zero modes, 
reduces to 

(3.9) 

which transforms, under e and l?, as 

vrif -+ z&u-? 

Thus, the expectation value of topological observables 

(3.10) 

(3.11) 

evaluated with the action S vanishes unless (see [4] for related analysis) 

k(r; + s;) = 2d and c(ri - si) = 0 =+ L(ri, si) = (d, d). (3.12) 
I=1 i=l i=l 

This selection rule is, more or less, identical to the statement that the Donaldson invariants 
are pure Hodge type of (d, d) [25,26]. 

3.3. Including the on-shell observables 

There is a nice method to deal with on-shell invariant quantities [27, pp. 149-1511. To 
use Wo.2 and W2,‘, we should change the transformation laws (3.2) as 

,x0,2 h2 
= s"OO.2, ,x2*0 

h2 
= ~qxo2.0. (3.13) 

and add the terms 

1 -- 
83r2 .I 

Tr($ A +) A oos2 - & 
s 

Tr($ A 6) A w2.’ (3.14) 

X X 

to the action (3.7). Then the action is both s and S invariant with the modified transformation 
laws of (3.13). 

However, we cannot use the above prescription in the old construction. Since cp is both 
s and S closed, we have S2jjo*2 = s2x 2,0 = 0. H owever, Eqs. (2.11) and (3.13) show that 
G2B2,o = iSj2.0 # 0. Thus, the changes of the transformation laws as (3.13) do violate 
the relations s2 = S2 = 0. This is why the old theory realizes only the algebraic part of 
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Donaldson’s polynomials, defined by algebraic cycles which are Poincare dual to elements 
of H’~’ (S, H). 

At this point, it is sufficient to consider only N = 1 part of the supersymmetry as 
explained in Section 2.2. We choose G-symmetry. Since LLI’,~ is S-invariant and G2,’ is 
s-invariant modulo Xo,2 -equation of motion, it is sufficient to change the transformation 
law for jo,2 only in Eq. (3.2) as 

(3.15) 

and add 

1 -- 
8n2 s 

Tr(+ A @) A ,“,2 = -02,‘, 

X 

to the action (3.7): 

S’ = L 
h2 

X 

-2i[q, x2,‘] A *jog2 - - 2i[(o, X”]jo - ijon&+ - ix’&&+ 

-&p, B”][~, B”] + iBoA (@AsA -iaAaA)cP - 2hk $)$I 

-& 
s 

Tr(@ A $J) A O’er. 

X 

(3.16) 

(3.17) 

Note that this action has actually the full N = 2 symmetry. Clearly, the action S’ = S - G2*’ 
is not invariant under the transformations generated by U and R. However, the path integral 
measure, after integrating out every non-zero modes, is identical to the one defined by the ac- 
tion S, since the additional term does not change the equations of zero-modes. Therefore the 
partition function (1)’ for the action S’ can be interpreted as the following expectation value: 

(1)’ = (z $(GY) (3.18) 

evaluated in the theory with the action S. Clearly, this is non-zero only for d = 0 and 
identical to (1). 

One can further add the following term to S’ maintaining the S-symmetry, 

s Tr(B”jo’2) A ti2,’ 
> 

X 

‘S h2 
=l Tr(j”jo,2) A w2*’ + 41~2 

s 
Tr(B”q)02V0 A woT2. 

X X 

(3.19) 

Adding these terms will explicitly break the N = 2 supersymmetry down to the N = 1 
supersymmetry (the s-symmetry). The new S-invariant action is 
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S” = S - & 
s 

Tr($ A $r) A ooq2 + i 
s 

Tr(j”Xo$*) A ,*,’ 

X X 

h* 

+4n2 s 
Tr( B”p)w250 A w”,*. (3.20) 

X 

The above procedures to obtain S’ and S” from the original N = 2 supersymmetric action 
was directly motivated from Section 3 of Ref. [4]. Adding -&2~0 to the action S gives the 
bare mass to $r. Adding (3.19) to S’ by breaking the N = 2 symmetry down to N = 1 
induces the mass gap to cp. It is natural due to the supersymmetry Sq = -i&(p. The mass 
gap can be most easily seen by the B”-equation of motion for the action S”, 

h4 
(+A + ,2mfi& + 2A([@l, $1, = 0 + (q) = -2A([llr, $1) 

d:dA + (h4/rr2)mri ’ 
(3.21) 

where we have used the K8hler identities 

8: = i[&, A], aA* = -i[&, A], (3.22) 

and set w*.’ A w”,* = mrE(w A co). The mass gap of the theory was crucial in Witten’s 
calculation in [4]. Of course, the mass gap disappears in the vanishing locus of w”q2. 

4. Deformations to holomorphic Yang-Mills theories 

We now turn to HYM theory. Since the terms which are proportional to the KIhler form 
are identical in the old and new actions &ld and S, we can repeat the procedure in [6] 
to obtain N = 2 HYM theory. It is convenient to choose delta function gauge by setting 
(Y = B = 0 in (3.4). Now the action for N = 2 TYM theory is 

S = $ -iH*,’ A *Fo3* - iHo,* A *F*,’ + ix*.’ A *$A$ 

X 

+iXO,* A *i&?,b - 2iH’f - ijon&+ - ix’A&$ 

+iB”A ((i&$4 - i&a,& - 2[$, $]))$I . 

Then, the action of N = 2 HYM theory becomes 

SH = $ 
s [ 

Tr _iH*,u A *FO%* _ iHo,* A *F*,’ 

X 

1 -- 
4Tr* s 

Tr(icpF + + A $) A o - 5 
s 

Tr(yl*)$. 

X X 

(4.1) 

(4.2) 
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This is equivalent to the action studied in [6]. The difference is that x2,’ and jo,2 are no 
longer BRST exact in this new setting. 

Since N = 2 HYM theory has the same N = 2 supersymmetry and the same topological 
observables as those of N = 2 TYM theory, we can repeat the same procedure to deal with 
the on-shell invariant quantities. It is sufficient to consider the N = 1 part of the symmetry 
and we, once again, consider the S-symmetry. Adding (3.16) to the action SH. we have a 
new action 

$, = $ S[ Tr iH2s0 A *FO** - iHo,* A *F**’ + ix*,’ A *&?j + ijo’* A *aA@ 1 
X 

1 

4lr* s 
Tr(iqF + Q A $) A w - & 

s 
Tr(q2) $ 

(4.3) 

where the change of the transformation of S as (3.15) is understood. Of course, we start 
from the action S’ (in the delta function gauge) and then define the mapping to the HYM 
theory. Both procedures give the identical result. 

The partition function Z(&)d of the HYM theory with action SH is a generating functional 

r+2s=d s 

z(&)d = c h (f%‘@‘) + o(eeC”), 
r.s . 

where 

1 
W=- 

49 s 
Tr(ipF + y? A $) A w, 

X 

@ = & 
s 

cl)* 
Tr(p*)z, 

X 

(4.4) 

(4.5) 

and c in exponentially small terms is the positive minimum value of -( 1/2~r*) lx $$*Trf: 
for the higher critical points fC [7,6]. Note that the partition function z’(&)d with action Sb 
is identical to Z(&)d: 

~‘(,,.,-(~;(~2’o)~)~=~~r+~-li~((l;2’o)fl~r~~)+~~~ 

r+2s=d 

= c -c(,‘@)+... 

r,s . . 

= Z(&)d. (4.6) 

However, the HYM theories with the actions SH and Sh have different localizations. The 
H&0, Ho.*, x*,0 and -jo,* . integrations localize both the theories to Td's ’ , 
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~2.0 = F”.2 = aA@ = i&j = 0. 

The cp equations of the motion for both the actions SH and SL give 

2if + E(P = 0. 

4s 

(4.7) 

(4.8) 

Then, a fixed point equation of the basic supersymmetry leads to 

s$ = -iaACp = 0 d aA f = 0 e dAf = 0. (4.9) 

However, the theory with the action Sh has an additional fixed point equation due to Eq. 
(3.15) 

%P2 = (h2/4x2)(pw0.’ = 0. (4.10) 

This shows that in the vanishing locus C c X of w ‘q2 the same localization governs the 
two theories, while in the complement of C the theory with the action Sk is localized to 
the instanton (f = 0). Due to the supersymmetry, we also have 

f =O==+Gf =&J=o. (4.1 I) 

Finally, we note that the HYM theory with action Sh is entirely equivalent to the TYM 
theory with action S’ for hyper-Kahler surfaces. There will be no contributions of higher 
critical points. Since those manifolds have only one holomorphic harmonic two-form which 
is nowhere vanishing, the fixed point equation (4.10) leads to q = 0. Then, Eq (4.8) implies 
that there will be no contributions of higher critical points. This may be related to a general 
fact that the twisting of N = 2 supersymmetric theory does not change anything on a 
manifold with trivial canonical line bundle [4,27]. 

4.1. Deformation from the action S” 

One can also start with the TYM theory with action S” (in the delta function gauge) 
which has the S-symmetry only. We will show that there is a suitable deformation of S” to 
the HYM theory with action Sk. 

We can add to the action S” an S-exact term maintaining the S-symmetry, 

= -5 1 ~Tr(~“jo + iHoBo), 

X X 

which leads to a family of S-symmetric action S”(t) 

id 
FTr(B"xo) 

X 

(4.12) 

= _$ s [ Tr _iH’,’ A *F’T~ - iH0*2 A *F2q0 + ix2so A *$I+6 + ijo’2 A *aA+ 

X 
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- 2iH”(f + 2tB”) + iBoA ((GA& - i&&)p - 2[$, $1) + 4tx”jo 

-ii”~~~~-ixon~~~)~]-~/Tr(~nll)A~o’2 

X 

s 

h2 
+i Tr(j”jo’2) A w2” + s 

s 
Tr(B”q)W2,’ A ,“,2 

X X 

(4.13) 

After integrating B”, x0 and jj” out, we have 

S”(r) = $ -iH2s0 A *F0q2 - iH0,2 A *F2q0 + ix2so A *aA$ 

X 

(4.14) 

where we have used the K%hler identities (3.22). 
Now we examine what kind of localization governs the deformed theory with action 

S”(t). The H2$’ and Ho*2 integration localize the theory to A’*‘. The q-integration gives 

co2 h4 
-d;dAf T- j--&u 28 /./ ($2 = 0 

-_i - 
s 

Tr(dAf A *dA f) - $ 
s 

mtiTr(f * f) = 0. 

X X 

(4.15) 

Thus, the fixed points of the deformed theory are dA f = 0 at the vanishing locus C of wo92, 
while it is instanton (f = 0) in the complement of C. We see that the deformed theory has 
the same bosonic fixed point with the HYM theory with the action Sk. The x 2,0 and i”v2 
integrations give 

i&6 = 0, 
h2 -.+ - 

i&e + $!A$ Aw2” = 0. (4.16) 

In the locus C, the above equations reduce to 

aA@ = 0, 3Atj = 0, 

while in the complement of C we have additional equation 

I?$$ = 0. 

(4.17) 

(4.18) 
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This coincides to the bosonic fixed point f = 0 in the complement of C 

sf = 0 ==+ i&5 = 0. (4.19) 

Thus, the deformed theory has the same fixed points with the HYM theory with action Sk. 
Then, the final step of the deformation is to consider the expectation value of the observable 
exp(& + SO) with t = co limit, which leads to the action Sb. 

It is interesting to note that the action Sb actually has the full N = 2 symmetry. During 
the deformation of the N = 1 symmetric TYM action S” to the HYM theory, the broken 
N = 1 symmetry (the s-symmetry) is restored. We do not know whether this has any 
physical application. 

Anyway, it is sufficient to consider the S-symmetry only. If we want to maintain the full 
symmetry explicitly, we should change the transformation laws as (3.13) and add (3.14) to 
the action SH, which leads to 

s; = SH - &O - 6032. (4.20) 

The partition function Z”(E) with the action SK is identical to 

Z”(E) = c ; (&OJ)n)’ = (c & (&P)~) 
( 

, (4.2 1) 
H H 

where (.)‘, denotes the expectation value evaluated with the action Sx. In the above iden- 
tification, considering S-symmetry only is understood such that 6’~~ can be an observable. 

4.2. A simple calculation 

Now we determine the Donaldson polynomial invariants on H’s2 (X, Z) $ H2,‘( X, .77). 
We consider the partition function Z’(&)d of HYM theory with action Sb: 

1 
Z’(&)d = - 

WB) s 
VA'VA"V~V~V~IVDH~~~VDH~~~V~~~~V~~~~ 

x exp iH2,’ A *F0.2 + iH0,2 A *F2.’ 

X 

-‘X ’ 2’o A *aA?) - ix092 A *aA@ 
1 

+-4-$ Tr(i~F’~’ 
s 

+$A+)A\, 

X 

+& s w2 zTrv2 + & s Tr($ A y!r) A CI_I’,~ . 
> 

X X 

It is more convenient to represent Wo,2 and W2,0 by 

$0 1 

s 
Tr($ A I$), $0 1 - 

8lr2 
- 

8x2 s 
'Wllr A v+), 

l- r 

(4.22) 

(4.23) 
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where r and f denote homology cycles Poincare dual to w2,0 and w”v2, respectively. Now 
we want to determine the expectation value ((~2~~~)~)‘~ evaluated in the HYM theory with 
action S;i 

co 1 r+2s=d-n-m s 
= 

c z c 
n=O r.s 

-& ( (&0~2)m(&2~0)n&Y@s) + . . . 

1 r+2s=d-2m s 

=- 
c 

-& ((~0.2&O)m~r~~) + . . 
m! rs . . 

=- l, (((;0.2&04 
m. H’ 

Thus. we consider 

(W -“.2;z,o)m)H = &-VA'VA"V@V$Vp.~ 

(4.24) 

(4.25) 

We note that $ and 1/1 are coupled as free fields with the trivial propagator, 

(@(x)$j(y)) = -i4n2.si;6”8”(n - y). (4.26) 

To be more precise, this amounts to perform Gaussian integrals in the action S$. The $ 
and $ are obviously coupled as free field for the vanishing locus C of w”y2 in X. The actual 
calculation (using the Kahler identities) shows that they are coupled as free field even in the 
complement of C if ,?I,$$ = $1+9 = 0 which are guaranteed, as explained in Section 4.1. 
Upon performing the + and @ integral, we see (4.25) is equivalent to 

xexp(...+-4$/Tr(iqFt,t +@n$)~~+&/$Tr~2) 

X X 

xm!(F. r)“, (4.27) 
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where r. f = J, o”,2 AWN,’ denotes the intersection number. 8 Thus we have the following 
factorization: 

=m! i; . ry + , 
r,s 

(4.28) 

that is. 

r+2s=d-2m 

c 1 

r+2s=d-2m 
(~0.2gj2.O)m~r~s = m! c ((“W”) (i; nm. (4.29) 

T,S r,s 

If d = 2m, we have 

1 (~0.2,2.0 m 
) ) = m!(F r)“(l). (4.30) 

Then 

(~0.2 + 62,O)d _ (2m)! 

) m!m! (W 
-0,2gj?.Ojm) = (4.3 1) 

4.3. General remarks on the algebraic part 

Let M be a simple simply connected four-manifold with b:(M) ? 3. Let @(M) denote 
theSU(2)polynomialsonHo(M,Z)@H2(M,Z),whered =4k-~(l+b~).Kronheimer 
and Mrowka [28] have announced that the Donaldson series q(M) = Cd qd (X)/d! is given 

by 

q(M) = eQi2 n c a;eKi, (4.32) 
i=l 

where Q is the intersection form, regarded as a quadratic function (Q E Sim2 ( H2 (M, Z))), 
of M, Ki E Hz(M) denote the simple classes and Qi are non-zero rational numbers. Since Q 
is a homeomorphism invariant, any relevant information for smooth structures is contained 
in Ki and ai. 

Recently, Brusse proved that the basic classes Ki are of the type (1, l), i.e. K; E 
H’q’(X, Z), for a simple simply connected algebraic surfaces X with pg(X) 2 1 [29], 
using the pureness of the Donaldson invariants for simply connected algebraic surfaces 
[25]. Then, one of his corollary that for all ,“*2 E Hu2(X. Z) 

q (COO,2 +w2To) =q~eip[/&’ *w2*O], (4.33) 

* Actually, the above Eq. (4.27) should contain a group theoretical factor due to the trace. Since we are 
dealing with SU(2) case, the omitted factor is dim(SU(2))” = 3m. It seems to us that mathematicians 
usually omit this term. 
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where qo is Donaldson’s polynomial of degree zero, can be immediately followed from 
(4.32). This result says that the algebraic part of Donaldson’s polynomials, i.e. the polyno- 
mials defined by Li [8], contains as much information as the full polynomials for a simple 
simply connected algebraic surface. 

More recently, Witten has shown that all compact K%hler surfaces with pg 1 1 are of 
simple type [4]. His completely explicit formula for the full polynomials also imply that all 
the simple classes (or we should say the Kronheimer-Mrowka-Witten classes) are of the 
type (1, I), in fact, they are linear combinations of components of the canonical divisor. 

Our heuristic calculation shows that for every simply connected compact Kahler surface 
X with pg(X) 1 1 and for all m”,* E H’**(X, Z) 

That is, Eq. (4.3 1) can be written as 

qd (,*,O 
(2m)! 

+ coo’*> = qo, 
i 1 

s 
,*,o A ,0,2 ) 

m. 
X 

(4.34) 

(4.35) 

where qo = (1). Thus we have 

q (CP + co’,*) = qo exp (4.36) 

All the relevant information (beyond the classical invariants) of Donaldson’s polynomial 
invariants are contained in the algebraic part. We should be able to evaluate the following 
topological correlation function evaluated by the action functional SL (4.3) 

1 

voKG) s 
DA’ VA” V$ V$Z$ DH*,’ ‘DH’** Dx**’ Vi’,* 

1 
x exp 

(s[ i;z 
Tr iH*,’ A *FO,* + iHoV2 A *F**’ 

X 

-ix*,’ A $jA$ - ijo’* A *aA+ 
1 

+&2 Tr(iqF’*‘++*r/l)r\w+& $Trq’ 

X X 

s 
Tr(+ A +) A w”,* Tr(iqF’.’ + $ A $), (4.37) 

X 

where Zi are algebraic cycles Poincare dual to elements of H ‘7’ (X, H). In evaluating this 
expectation value, the term c%*,~ itself do not contribute to the path integral. However, the 
modification of the transformation law of j”v2 given by Eq. (3.11) dramatically changes 
the fixed points of the theory. 
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The path integral of a cohomological field theory with global fermionic symmetry Q is 
localized to an Q-invariant neighbourhood of the fixed point locus of Q. One must perform 
the path integral along the fixed point locus exactly, while the transverse path integral can 
be done in one-loop approximation [30]. 

A fixed point of the HYM with action SH is 

d/t(O = 0, (4.38) 

where A E A’,‘. Thus q at the fixed point locus is a covariant constant. There can be two 
branches: (a) if Eq. (4.38) has no non-trivial solutions, that is cp = 0, the connection A is 
irreducible; (b) if v, # 0 solves Eq. (4.38), a holomorphic connection A should be reducible 
and the bundle EA splits as a direct sum of holomorphic line bundles &A = L @ L-’ . It is 
worthwhile to note that all higher critical points of HYM theory are reducible holomorphic 
connections and there are no reducible instantons for generic choices of metric. The HYM 
theory with action Sh has additional source of fixed point 

ijo. = (h2/47?)(p(x)w OJ(x) = 0. (4.39) 

Let C c X be the locus of o’,~(x) = 0 and Cc c X be the locus of O’er # 0. Eq. 
(4.39) forces that p(x) should vanish if x E Cc. On the other hand, p(x) can be either zero 
or non-zero covariant constant if x E C. That is, we have actually three different branches: 
(i) brunch I: If x E Cc, q(x) = 0; (ii) brunch IIa: x E C and q(x) = 0; (iii) brunch IIb: 
x E C and q(x) # 0. Thus, the path integral (4.37) can be formally written as product of 
the contributions P(1) and P (II) of the branches I and II, respectively, 

P(I)P(II) = P(I)P(IIa) + P(I)P(IIb). (4.40) 

We can evaluate the first part P(I)P(IIa) of the path integral using a similar method 
adapted in Section 4.2. Note that the higher critical points do not contribute to this path 
integral, since cp = 0 at the fixed points in branches I and IIa. For simplicity, we consider 
d = 2m. We can simply set (p = 0 in (4.37), which leads to 

1 

vol(G) s 
Tr(ll/ A $) A -) 

Td'.' X 

(4.41) 

Now the Gaussian integral over + and $ using (4.26) immediately gives 

1 

vol(6) s 
Td',' 

Czm), (4.42) 

X 

where Q(“) is a multi-linear form [2] on Hz(X) defined by 

(4.43) 
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and Q is the intersection form of X. In particular, if we consider a simply connected hyper- 
Kahler surface such that ,o,2 E Zf0q2(X, H) is nowhere vanishing, then, only branch I 
contributes (Cc = X) and we can set d = 2m. We have 

42rn(&,~.., C2m) = Q(‘%G, . . . ) ~2m), 

which coincides to the known mathematical answer [2,31]. 
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